Likelihood Inference in Exponential Families and Directions of Recession

نویسنده

  • Charles J. Geyer
چکیده

When in a full exponential family the maximum likelihood estimate (MLE) does not exist, the MLE may exist in the Barndorff-Nielsen completion of the family. We propose a practical algorithm for finding the MLE in the completion based on repeated linear programming using the R contributed package rcdd and illustrate it with two generalized linear model examples. When the MLE for the null hypothesis lies in the completion, likelihood ratio tests of model comparison are almost unchanged from the usual case. Only the degrees of freedom need to be adjusted. When the MLE lies in the completion, confidence intervals are changed much more from the usual case. The MLE of the natural parameter can be thought of as having gone to infinity in a certain direction, which we call a generic direction of recession. We propose a new one-sided confidence interval which says how close to infinity the natural parameter may be. This maps to one-sided confidence intervals for mean values showing how close to the boundary of their support they may be. AMS 2000 subject classifications: Primary 62F99; secondary 52B55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

Supporting Theory and Data Analysis for “ Likelihood Inference in Exponential Families and Directions of Recession ”

When in a full exponential family the maximum likelihood estimate (MLE) does not exist, the MLE may exist in the Barndorff-Nielsen completion of the family (BarndorffNielsen, 1978; Brown, 1986; Geyer, 1990). A practical algorithm for finding the MLE in the completion using repeated linear programming was proposed in the author’s unpublished thesis (Geyer, 1990) and used in Geyer and Thompson (1...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Comparsion Between Several Distributions of Exponential Family and Offering Their Features and Applications

‎In this paper‎, ‎first‎, ‎we investigate probability density function and the failure rate function of some families of exponential distributions‎. ‎Then we present their features such as expectation‎, ‎variance‎, ‎moments and maximum likelihood estimation and we identify the most flexible distributions according to the figure of probability density function and the failure rate function and f...

متن کامل

Review of the Applications of Exponential Family in Statistical Inference

‎In this paper‎, ‎after introducing exponential family and a history of work done by researchers in the field of statistics‎, ‎some applications of this family in statistical inference especially in estimation problem‎,‎statistical hypothesis testing and statistical information theory concepts will be discussed‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008